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Recent developments in both biological data acquisition and analysis
provide new opportunities for data-driven modelling of the health state of
an organism. In this paper, we explore the evolution of temperature patterns
generated by telemetry data collected from healthy and infected mice. We
investigate several techniques to visualize and identify anomalies in tempera-
ture time series as temperature relates to the onset of infectious disease.
Visualization tools such as Laplacian Eigenmaps and Multidimensional Scal-
ing allow one to gain an understanding of a dataset as a whole. Anomaly
detection tools for nonlinear time series modelling, such as Radial Basis Func-
tions and Multivariate State Estimation Technique, allow one to build models
representing a healthy state in individuals. We illustrate these methods on an
experimental dataset of 306 Collaborative Cross mice challenged with
Salmonella typhimurium and show how interruption in circadian patterns and
severity of infection can be revealed directly from these time series within 3
days of the infection event.
1. Introduction
Body temperature is a basic vital sign that has long been used for evaluating the
health of an individual. Though it is often treated as a single statistic, the rich-
ness of temperature as a vital sign comes when we consider it as a function of
time. In most organisms, body temperature follows a 24 h circadian rhythm.
Deviations in this pattern can often indicate changes in the underlying health
state. After exposure to a pathogen that initiates a host immune response to
infection, the signatures of the healthy temperature data may trend away
from this circadian pattern. The impact of exposure to a pathogen may not
be visibly apparent in the host’s physical behaviour for 2–3 days or more
after infection, but, as we will see, temperature time series may reveal
significant anomalies even within the first 24 h.

The investigation of the temporal evolution of body temperature as a predictor
of health state has attracted considerable interest. In [1], for example, various
features were manually extracted from temperature time series taken from febrile
critically ill patients in an intensive care unit, and these were used to predict
whether thepatienthadsepsis. In [2], on theotherhand, the complexityof the temp-
erature time serieswasused to predict the outcome of critically ill patients,while in
[3] the regularityof the time series (basedonapproximate entropy)wasused topre-
dict survival of critically ill patients. What these works together show is that
sufficiently dense temperature monitoring enables one to extract fairly specific
information about the biological state of the individual organism. The recent devel-
opment of newmachine learning tools for time-series classification and prediction
(e.g. [4,5]) will facilitate the large-scale analysis of biological mechanisms related to
temperature profiles and the host immune response to infection.
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Figure 1. Temperature profiles for five different mouse prototypes aligned relative to the time of infection (red). Significant qualitative differences in patterns before
and after infection are observed. (Online version in colour.)
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We will explore a collection of mathematical and machine
learning techniques to visualize and build models of these
time series, either individually or as a collection, while using
very little prior knowledge of the data. We consider several
approaches to answering two fundamental questions. First,
what quantitative notions of similarity between temperature
time series dowell in capturing relationships in the underlying
health state between individuals? Stated another way, if body
temperature reveals information about health, then how can
we quantitatively establish similarity between two individuals
whose body temperatures follow similar patterns? And does
this imply a similarity in their underlying health state?
Second, from a practical point of view, can we identify
anomalies in temperature time series that can be characterized
as a deviation from the healthy state?

We have observed that simple measures such as increased
mean temperature (e.g. a fever) provide an incomplete picture
here—severe interruptions to healthy behaviour may occur
while the mean temperature is nearly constant. Additionally,
we observe a broad spectrum of responses to infection in the
data beyond changes of the mean temperature. Figure 1 illus-
trates some of this broad variation. The data are focused on
an interval from 3 days before to 3 days after infection, aligned
to the time of infection marked in red. Prior to infection, the
dominant mode is approximately circadian—periodic with
period 24 h—but the strength of this mode relative to oscil-
lations on shorter time scales may vary greatly depending on
the individual mouse. After infection, a variety of responses
are possible: from top to bottom, elevated temperature,
depressed temperature and potentially no noticeable effect in
the mean temperature or even in the oscillations on various
time scales. This illustrates a need for careful visualization
and anomaly detection tools tailored to the individual.

From a mathematical perspective, we view a time series
as having potential structure, signatures or patterns that
serve to characterize the biological state. As an observable,
temperature may be viewed as a projection onto one dimen-
sion of this latent geometry that can be recovered using
time-delay embeddings [6,7]. Recent developments in
machine learning and data fitting make the exploration of
this structure on large time-series datasets more tractable,
creating the potential for new discoveries.

This paper is structured as follows: in §2, we describe the
dataset we study as well as pre-processing techniques that
we employed.Our first analysis in §3 explores howvisualization
techniques can be brought to bear on these datasets in bulk.
Laplacian Eigenmaps, a tool for identifying low-dimensional
patterns in datasets, can be used to identify distinct signatures
in the collection of mice post-infection. Specialized metrics and
Multidimensional Scaling (MDS) can tease out associations
between these time series and the severity of infection as
measured by the severity of infection by Salmonella upon
necropsy. In §4,we introduce techniques fordetecting anomalies
in the time series to identify interruptions in circadian patterns
post-infection. Finally, we conclude in §5.

2. The data and pre-processing
The dataset we consider is a set of time series collected from
306 Collaborative Cross mice [8,9] challenged with Salmonella
typhimurium as part of a broader study conducted by the
Andrews-Polymenis and Threadgill laboratories at Texas
A&M University, College Station, TX, USA, to better under-
stand the broad range of host–pathogen dynamics in mice
with Salmonella. As the scope of this paper is in methods of
analysing time series, rather than conducting a full analysis
of this experiment, we only briefly address the experimental
background information here.

Severalmonths prior to inoculation, eachmouse is surgically
implantedwith a telemetrydevicewhich serves tomeasure body
temperature and net movement (termed ‘activity’) of the mouse
once per minute continuously during the experiment. The
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Figure 2. Time-delayed embedding of mouse CC004-021. Data are smoothed via median filtering on a 3 h window for the purposes of visualization. (a) Colour
indicates time in days relative to time of inoculation. Observe pre-infection data (blues) traverse a periodic loop. (b) Same embedded data are coloured by time of
day; state is predictable while healthy, with relative location dependent on time of day. Interruption of circadian patterns after infection corresponds with a depar-
ture from this loop. (Online version in colour.)
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mouse is then allowed to recover from the surgery so as not to
impede immune response during the experimental phase.
Experiments run between approximately 14 and 28 days.
Approximately 7 days of telemetry data are recorded prior to
infection for all mice. Each mouse is then inoculated with a
dosage of S. typhimurium and observation continues for the
remaining 7–21 days of the experiment. While in §3 we illustrate
the power of visualization tools equippedwith specialmetrics to
associate time series with severity of Salmonella infection, we
otherwise limit our attention in this paper to the temperature
time-series data in isolation and corresponding methods for
visualization and anomaly detection.

2.1. Data filtering
The time series are processed in several ways throughout the
paper. Time series, whether as a whole or windowed, are dis-
carded entirely if there is excessive missingness of data,
ranging from 120 to 240min of missingness in the data. This
resulted in keeping between 131 and 185 time series depending
on the visualization or anomaly detection task.With the excep-
tionof §§3.2and4.4,weprimarilyusemedian filtering included
in the scipy package in Python with kernel_size=31. In
§§3.2 and 4.4, we use wavelet smoothing with Haar wavelets
with provided discrete and inverse discrete wavelet transform
in the PyWavelets package; we discard detail coefficients
beyond the sixth degree, which corresponds to the filtering of
time scales smaller than 64min. We have not seen any signifi-
cant differences in the results of the algorithms depending on
the choice of median filtering or wavelet smoothing.

2.2. Time-delayed embedding
For the purpose of analysing scalar time series x(t), we fre-
quently use time-delayed embeddings to produce a vector
representation,

x(t) 7! x̂(t) ¼ (x(t), x(t� t), . . . , x(t� (d� 1)t)),

t [ R, t . 0,
(2:1)

with positive delay parameter τ and prescribed embedding
dimension d. Time-delayed embeddings have theoretical
guarantees via Takens’ embedding theorem [7] when an obser-
vable x(t) is part of a multivariate deterministic system x(t).
Effectively, if the time series is a scalar sample from an
m-dimensional manifold, the dynamical system may be recon-
structed in a Euclidean space of dimension 2m + 1. It is natural
to consider m = 1 for periodic temperature time series which
may be viewed topologically as a circle.

The choice of delay τ and embedding dimension d is
dependent on the nature of the phenomenon being studied
and the number of observable variables. For a scalar x(t)
with t [ R, a common choice is to choose τ to be the first
zero of the autocorrelation,

t ¼ min
s.0

s : 0 ¼
ð
D
x(t)x(t� s) dt

� �
, (2:2)

for some domain of integration D. For example, with a sinu-
soid x(t) = sin (2πt/T ), a calculation by hand shows τ = T/4;
that is, the first zero-autocorrelation time is a quarter-period.
Our studies of the numerical autocorrelation in mouse time
series result in a value of τ between 4 and 12 h, varying from
mouse to mouse. Supposing a 24 h period for a mouse time
series is typical, the quarter-period reasoning suggests that a
delay of τ = 6 h is reasonable for our studies below.

To give a sense of the typical behaviour, we visualize
the three-dimensional time-delayed embedding of a mouse’s
time series in figure 2. Smoothing and sub-sampling are
employed to improve visibility of the topological loop pre-
infection. In figure 2a, shades of blue and red indicate time
before or after infection, respectively. The pre-infection data
navigate the loop, but eventually exit the trajectory after infec-
tion, as seen in the deep reds.

This loop indeed corresponds to the circadian pattern of
the mice, as can be seen in figure 2b, with a robust colouring
along the loop associated with the time of day.

2.3. Pre-processing of the experimental data
Here we describe the pre-processing involved and introduce
notation used throughout these sections. Because of the
nature of the varying length of experiments, either by early
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termination due to succumbing to infection or simply by vary-
ing length of the experiments, the time series come in a variety
of lengths ranging from 15 833 to 40 313min. Very few algor-
ithms can work with time series of different lengths in
computing pairwise similarities, identifying clusters, etc., and
those that do often implicitly map time series to a common
latent space before computing similarities. Hence, it is natural
to restrict attention to a common interval of interest. We will
apply such restrictions frequently in this paper, specifying the
time interval which we restrict ourselves to in each case.
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3. Visualization techniques for collections of
time series

In this section, we review a few tools to visualize collections of
these time series in aggregate. Visualization on this scale is a
critical step in the analysis of these data for identifying outliers
and revealing, or at least confirming, expected mathematical
structure to the data. A recurring theme wewill see in this sec-
tion is the presence of topological loops associated with the
data, especially during the healthy phase. We explore the uti-
lity of Laplacian Eigenmaps to reveal this information on
windows of the data in §3.1. In §3.2, we investigate a technique
and the mathematical interpretation of constructing similarity
measures between the time series to account for differences
in phase between the mice on the dominant 24 h mode. Initial
experiments show that this does reveal some of the underlying
health state—specifically the severity of infection in the
associated mice upon necropsy.

3.1. Comparing signatures with Laplacian Eigenmaps
Laplacian Eigenmaps is a nonlinear dimensionality reduction
method that aims to take a high-dimensional dataset poten-
tially living on a low-dimensional manifold and provide a
representation of that data in a low-dimensional space [10].
After building a graph from neighbourhood information in
the dataset X which contains uniformly sized data—in our
case, time series restricted to a window [a, b] relative to the
time of infection—the graph Laplacian is used to compute a
low-dimensional representation eX of the dataset that optimally
preserves local neighbourhood information. To achieve this,
the algorithm seeks to minimize the following objective func-
tion, in general a weighted sum over pairwise distances in
the embedded space: X

0�i,j�jXj�1

keXi � eX jkW ij, (3:1)

under the appropriate constraints. Note that here eXi and eX j are
elements of eX, andW is a weight matrix which depends on the
variation of the algorithm. It can be seen that,with the appropri-
ate choice of weights, the objective function incurs a heavy
penalty if neighbouring points Xi and Xj are mapped far apart.
Thus, this mapping attempts to preserve the pairwise distances
between all points Xi, Xj in X; that is, if Xi is close to Xj, then we
typically expect eXi will be close to eX j. Once we have chosen an
interval of time that determines what time-series windows will
be in X, we use Euclidean distance to generate an adjacency
matrix W for all the points in X. Using a fixed number of k clo-
sest neighbours to a point Xi in X (we chose k = 5 in the
experiments in this paper),we populateWijwith a 1 ifXi belongs
to the set of nearest neighbours of Xj. Otherwise, Wij= 0. We
then generate a diagonal weight matrix D with Dii ¼
P

j Wij.
This allows us to construct the graph Laplacian L =D−W,
which is a symmetric, positive semidefinite matrix. Lastly, we
solve the generalized eigenvector problem

Lv ¼ lDv: (3:2)

Let v0,…, v|X|−1 be the eigenvectors of equation 3.2 ordered
according to their eigenvalue size

0 ¼ l0 � l1 � ljXj�1:

We leave out the eigenvector v0 corresponding to eigenvalue
λ0 = 0 and use the next m eigenvectors for embedding in
m-dimensional Euclidean space. For our visualizations, we
choose m = 2. For a detailed exposition of the algorithm, along
with possible variations, see [10].

Now we use this tool on the dataset. To distinguish quali-
tative differences in the healthy and infected signatures, we
workwith the data on 1 daywindows and study the qualitative
structure of the embedded data as the window moves from
before to after infection. Figure 3 illustrates the results.

Recall that, for this experiment, we use Euclidean distances
to determine neighbouring points. Figure 3a shows the embed-
ding in two dimensions; figure 3b shows the corresponding
time series for seven mice selected uniformly from the
embedded structure following inoculation (figure 3a(iii)).
Panels in figure 3a and intervals in figure 3b are associated
with one another and colour-coded appropriately.

The first window (green shading) starts 3 days before
inoculation and end 2 days before inoculation. These are con-
sidered the healthy parts of the time series. As shown by the
time series in figure 3b, most of the mice during this time
window exhibit some sort of circadian rhythm. This is what
causes the circular shape of the embedding; our studies into
synthetic examples with collections of sinusoids (not shown
here) have produced similar behaviour.

This circle retains its structure as the window continues
forward to the time of inoculation.However, when the sampling
window crosses through the time of inoculation (yellow shad-
ing), we see that the circle collapses with no obvious structure.
The immediate responses to infectionarevariedand inconsistent.
As the sampling window is moved to 2 days after infection (red
shading),we observe a quite different ‘V’-shaped structure in the
embedding. When comparing the representative time series of
mice along this line in the redhighlighted regions,we see explicit
differences in the behaviours; we refer to these as signatures.
Mouse CC043-078, for example, has highly erratic behaviour
which persisted from prior to infection. Tracing along the
embedded ‘V’ from the top left down to the centre and back to
the upper right (top to bottom in figure 3b), we see a range of
behaviours trending generally from erratic to stable, preserved
oscillations with no mean temperature elevation, to complete
interruption and consistently high temperature.
3.2. Modified correlation distance and Multi-
dimensional Scaling

Our studies with Laplacian Eigenmaps have shown that
distinctive signatures in the response to infection can be
successfully identified using visualization techniques. In this
section, we investigate various notions of dissimilarity between
pairs of time series and show how using this in conjunction
with MDS [11] can reveal further structure in the data.
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Consider the setX of time series restricted to a timewindow
[a, b] relative to infection. One would often like to understand
whether these can be clustered in a way such that distance
between time series correlates with difference in reaction to
infection. In order to do this, one needs to decide what it
means for pairs of time series to either be ‘close together’ or
‘far apart’; namely, we need to identify a distance function or,
more precisely, dissimilarity d :X� X ! R�0 that assigns a
non-negative number to each pair of time series. Because
time series in X are simply vectors in Rm, where m is the
number of time steps from a to b, there aremany known choices
for dissimilarity, including: ℓp-distances, dynamic time warp-
ing distance and correlation distance. Each of these captures
some aspect of similarity between elements of X, but is argu-
ably ineffective for our purposes. ℓp distances can have
unintuitive behaviour when working with the original time
series as the inputs. Dynamic time warping, which has been
quite successful in applications such as speech recognition,
requires many assumptions about the data which may not be
appropriate for this application.

Given these considerations, here we begin with corre-
lation distance dc defined between pairs of time series x,
y∈X,

dc(x, y) :¼ 1� (x� �x)T(y� �y)
kx� �xk2ky� �yk2

, (3:3)

where �x and �y denote the mean of x and y, respectively. Wewill
see shortly that dc captures the standard circadian rhythm
found in the time series of healthy mice. Since disruption of
the circadian rhythm is a basic reaction to infection, one can
take this as evidence that dc is measuring properties of x and
y that are also related to the response to infection.

Our approach for visualization in this subsection is to use
a notion of dissimilarity followed by MDS [11]. MDS is an
algorithm which attempts to represent the data in low dimen-
sions (two or three dimensions for visualization), while
preserving the distances, dissimilarities, etc., between pairs
of points as best as possible. Because MDS only requires a
matrix D as input which measures dissimilarity between all
pairs of points, it has great utility in scenarios where visual-
izations of high-dimensional data may not be appropriate or
one does not have a good sense of how to construct a bona fide
metric on the space.

We are interested in techniques which can easily associate
all data obeying a plain circadian rhythm in a single ‘healthy’
cluster, with outliers representing those mice succumbing to
infection. The primary obstacle to this is the fact that corre-
lation distance dc does not recognize two time series with a
standard circadian rhythm, but differing in phases, to be
‘close’. To this end, let H⊆X be all those time series that
have been determined to exhibit a ‘healthy’ circadian
rhythm. Define

bH ¼ {gk � x j 0 � k � m, x [ H},

where g represents the operation of a right circular shift of the
vector x; hence gk represents a circular shift of length k. This
represents all possible circular shifts of all mouse time series
deemed to be healthy. Mathematically, this set bH is the orbit
of Hwith respect to the action of Cm, the cyclic group of order
m. We will revisit this notion near the end of this subsection.
With this structure in place, we propose to account for phase
differences in comparing such time series by using a
modified dissimilarity

dqc(x, y) ¼ min (dc(x, y), min
h[bH (dc(x, h)þ dc(y, h))): (3:4)

Since bH will generally be a very large set, we found that in
practice bH can be reasonably approximated by the set of
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all cyclic shifts of a single prototypical time series for a
healthy mouse.

In figure 4a, we show the MDS approximation in R2 with
respect to correlation distance dc and this alternative dqc,
respectively, using a window [0, 5]; that is, starting at time of
inoculation and ending 5 days after inoculation. The circular
structure formed by the standard circadian rhythms collapses
to a dense cluster near the top of the plot. This allows for better
spatial expression of abnormal variation in temperature. Here
we have coloured each time series by the severity of Salmonella
infection in the livermeasured in colony-forming units (CFUs),
a measure of the severity of infection. The blue points corre-
spond to mice with low liver CFU values while the red
points correspond to mice with high liver CFU values. We
see that the mice with low liver CFU values cluster together
and the mice with high CFU values are generally located on
the periphery of this cluster. This lends evidence to the idea
that dqc can account for differences in phase in temperature
time series in a way that captures differing health outcomes
of mice.

We conclude by remarking on the underlying mathemat-
ical structure of dc and its relation to dqc. How can we
visualize the new space induced from dqc? Since correlation dis-
tance is invariantwith respect to changes in themagnitude of x,
y∈X, we can visualizeUwith correlation distance as points on
the high-dimensional sphere Sm, wherem is the number of time
steps in each time-series window. dc is then related to the angle
between x and y. As shown in figure 4b, we visualize a sche-
matic of Sm, with the orbit of all phases of a healthy time
series forming a meridian on this sphere. In this illustration,
the phases of a healthy circadian rhythm sit on a one-dimen-
sional meridian of Sm. Modifying dc to dqc will have the effect
of approximately collapsing this meridian to a single point.
What we have now is two spheres Sm connected at a single
point which corresponds to all phases of the time series sitting
on the green line. This space is usually denoted by Sm∨Sm. We
remark that, while this understanding does not enter insofar as
the data analysis, enriching the mathematical theory behind
dissimilarity measures is highly valuable to give solid footing
from which practitioners have an understanding of why their
algorithms work. We are interested in building upon this
theory further in future work.

4. Anomaly detection
In this section, we discuss approaches to anomaly detection
for temperature time series. Our primary focus is on Radial
Basis Function (RBF) and Multivariate State Estimation
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Technique (MSET) approaches, which can build models for
time series in real time as data are observed. We initially
focus on two mice in the dataset: one infected with pathogen
while the other is a control, or a sham inoculation consisting
of a saline solution with no pathogen. The infected mouse
develops a severe interruption in its circadian temperature pat-
tern as the disease progresses while the control mouse is
apparently unaffected. Representation of these two extremes
allows us to analyse a range of behaviours of the algorithms.
After this, we narrow focus on the online MSET algorithm
and study its performance on the entire dataset in aggregate.

The RBF and MSET approaches are both well-known
approaches for representing nonlinear relationships in data
where little to no prior information can be assumed. Both
approaches hope to represent a larger dataset in terms of a rela-
tively small number of ‘exemplars’, which both aid in efficiently
comparing new data with what has been seen previously and
allow for easier interpretation of the resulting model, which
consists of the collection of exemplars and an algorithm for
representing new data with them.

Online algorithms progressively build a model as data are
streamed in, as opposed to being allowed to build a single
model witnessing the entire dataset at once. The algorithms
considered here also have the property that they only employ
novel exemplars to update the model, resulting in highly
efficient real-time processing.
4.1. Anomaly detection via sparse Radial Basis
Functions

The RBF approach to modelling data extends back to the 1971
paper byHardy [12] towards an application representing topo-
graphic data using multi-quadrics, but has since been applied
to a wide variety of fields; in particular, initially studied for
their general utility in approximating high-dimensional data
in [13,14].

RBFs may be viewed as a method of approximating a
function f such that the input–output pairs (xi, yi) satisfy

yi ¼ f(xi):

The RBF approach seeks to well represent the data in a form

yi ¼ w0 þ
XNc

k¼1

wkf(kxi � ckk), (4:1)

for some choices of basis function ϕ, norm and the number of
basis functions Nc. Typically, one then optimizes the collec-
tion of weights {wk, k = 0,…, Nc} and sometimes also the
RBF centres ck to minimize an error function.

There exist many algorithmic implementations of the
basic mathematical representation (4.1). We focus our atten-
tion on those aimed at applications for online modelling of
streaming data. For a fixed ϕ, much of the focus is on tech-
niques for adding to or pruning the number of basis
functions as new data arrive.

Following the work in [5], we determine the parameters in
the RBF approximations by solving the optimization problem

minimize
w, e

kwk1 þ Ce,

subject to kFw� bk1 � e,

9=
; (4:2)

where the fitting parameter e and the weight vector w are the
decision variables in the optimization problem.
In [5], this optimization problem is solved as a sequential
linear programming problem. The optimal solution evolves
as the data are being observed one point at a time.

4.2. Anomaly detection via Multivariate State
Estimation Technique

MSET is an algorithm originally developed at Argonne
National Laboratory by Singer et al. [15] for analysis of time
series related to industrial processes. The core step of MSET
is to compare n new d-dimensional observation(s) Y [ Rd�n

with an approximation Ŷ via a nonlinear mapping against
a collection of exemplars, sometimes termed the ‘memory’
of m exemplars X [ Rd�m,

Ŷ ¼ X(X� X)�1(X� Y): (4:3)

If the approximation Ŷ is not close to Y in some sense, then Y
is declared an anomaly and appropriate action may be taken.
Conventions relating to the operator ⊗ vary depending on
the reference (and can sometimes be contradictory within a
single reference). Here we generally think of ⊗ operating on
a pair of ordered collections of data, with the analogy to
the linear least-squares projection shown in equation (4.4),
so use of transposes in the general definition of Ŷ does not
make sense.

The operator ⊗ maps matrices X [ Rd�m and Y [ Rd�n to
a matrix Z [ Rm�n. When the operator ⊗ is based on the
standard inner product

X� Y ¼ XTY, (4:4)

the approximation (4.3) corresponds to the linear least-
squares projection of Y onto the subspace spanned by the
columns of X, and X⊗ X corresponds to the Gram matrix
and contains information about the quality of the columns
of X in representing their underlying subspace.

However, a linear representation of the data in exemplars
will be ineffective when receiving the time series sequentially.
Here instead we receive large collections of low-dimensional
streaming data (N > d), which invalidates linear approaches
since with probability one the first d vectors will form a
basis for Rd and any subsequent vector can be reconstructed
exactly. Therefore, in the context of MSET, ⊗ is understood to
be a nonlinear operator, with the primary condition being
that X⊗ X is non-singular. As discussed in [16], the original
operators developed are either patented or proprietary. Var-
ious other choices of operators ⊗ have been proposed in
the literature [16–18]. A straightforward class of operators
are those which construct the output of X⊗ Y by pair-wise
comparisons over the columns of matrices X ∈Rd×m and
Y [ Rd�n in analogy to the dot product’s relationship with
matrix multiplication. Overloading notation for simplicity

(A� B)i,j ¼ A�,i � B�,j; i ¼ 1, . . . , m, j ¼ 1, . . . , n, (4:5)

so that similarity need only be defined between vectors in Rd.
A common choice in data analysis is to use what is termed
‘cosine similarity’, which is the cosine of the angle formed
between two vectors,

s(x, y) ¼ xTy
kxk2kyk2

; cos (u); (4:6)

with s(x, y)∈ [− 1, 1]. In §3, we apply the closely related notion
of correlation distance as a way to quantify dis-similarity
between chunks of the scalar time series.
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For the application of MSET, we follow Wang et al. [18]
with the choice of similarity

x� y ¼ 1� kx� yk2
kxk2 þ kyk2

: (4:7)

In analogy with cosine similarity, x⊗ x = 1 and x⊗ 0 = 0. By
contrast, the same is not true if x = cy, c≠ 0 or 1; a calculation
shows x⊗ cx = 0 for c≤ 0 and decays asymptotically as 2/c
for c→ +∞. To better understand these similarities, we visu-
alize both the transformed cosine similarity 1/2 + 1/2s(x, y)
and this nonlinear similarity in figure 5. We fix a reference
point y = (1/2, 1) and study the value of x⊗ (1/2, 1) with
x = (x1, x2) over a range of values [− 4, 4] × [− 4, 4]. Cosine
similarity is constant on rays emanating from the origin,
attaining a value of 1 along the ray passing through (1/2, 1)
itself and zero in the opposing direction. However, (4.7) is
locally radially symmetric around the reference point and
exhibits complex behaviour on a larger scale. This local
radial symmetry in fact puts it in closer in relation to RBFs
than subspace-based techniques.

To implement MSET for anomaly detection, a good choice
of exemplars X is needed which well represents the nominal
state. This may be possible for isolated systems with large
amounts of nominal data to work with. However, using a
single collection of exemplars for the memory X across all
mouse time series is likely to be a bad idea to begin with,
since this cannot account for the large variability in the
dynamics of the healthy state between organisms. Stated
another way, we expect that these models will succeed
when each individual has its own set of exemplars.

Working with this hypothesis, in the scenario of a limited-
time experiment, exemplars need to be built for each mouse in
an online fashion. We propose the following online variation
of MSET to do this.

(i) Choose index-valued delay τ, embedding dimension d
and relative tolerance ɛ.

(ii) Observe the time series up to index τ(d− 1). Estimate
the mean value μ of the scalar time series from these
data as m̂ and store as a fixed entry-wise shift m̂1.
(iii) Initialize X with the first embedded vector
xt(d�1) � m̂1.

(iv) For each subsequent embedded data point k = τ(d−
1) + 1,…, calculate the MSET approximation x̂k to xk
from (4.3) using similarity (4.7).

(v) Evaluate the relative Euclidean error

ek ¼ kx̂k � xkk2
kxkk2

: (4:8)

If ek≥ ɛ, then append xk to the memory X and mark
time point k as an anomaly (1). Otherwise, mark as
nominal (0) and continue.

The choice to mean-centre the data in an online fashion
(step 2) is used to increase the sensitivity of the algorithm by
increasing the range of observed pairwise similarities when
using (4.7), which to some degree loses sensitivity when the
data are large in magnitude relative to variations. However,
this may not be necessary if another operator ⊗ is used.

4.3. Comparison of online anomaly detectors
Here we compare the two anomaly detectors discussed in this
section on the complete time series of two mice with distinct
post-infection responses. Onemouse, CBA-218,was inoculated
with a saline solution and can be considered a control for the
purposes of studying the association of temperature time
series with infection. Aside from a momentary disturbance
from the mock-inoculation process, their temperature patterns
go unchanged for the duration of the experiment. The other
mouse, CC004-021, was inoculated with Salmonella and its
temperature is moderately affected initially in the day after
infection, then severely so in the following days.

The results for online MSET and sparse RBFs are shown in
figure 6. For bothmodels, we observe an initial model-building
phase in the first 2 days of the time series. After this phase, the
frequency of new anomalies significantly drops off prior to
infection. For the mock-infected CBA-218, the number of new
anomalies after saline inoculation is very small, demonstrating
the ability of each algorithm to avoid significant false positives.
Shortly after the time of infection (on day 7) their circadian
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pattern is disturbed, and the time density of new anomalies is
larger than that for CBA-218 as themouse’s conditionworsens.
The parameters used for MSET are τ = 360 (6 h), d = 3 and ɛ =
0.05. In the case of the sparse RBF, we define a new data
point as an anomaly if more than zero iterations are needed
to update the model.

For mouse CC004-021 (figure 6a,b), the sparse RBF model
flags anomalies in greater density in the first noticeable inter-
ruption (by eyeball-norm) in the circadian rhythm following
infection, while not having further anomalies flagged in the
last 3–4 days of data; MSET by contrast flags anomalies in a
more spread-out fashion as the mouse’s condition worsens.
For the mock-infected mouse CBA-218, both algorithms ident-
ify some anomalies around the period of infection; after which
there are only occasional anomalies at the extrema of the
temperature time series.
4.4. From proof of principle to practical anomaly
detection

In this section, we pursue the goal of anomaly detection to
its final stage for the case of the online MSET algorithm and
evaluate its performance on a large portion of the data. A cri-
terion to separate the ‘learning’ and anomaly detection phases
of the online algorithm are defined, then a training and vali-
dation scheme are used to identify and evaluate the choice of
parameter needed for this criterion in practice. Further refine-
ment of the algorithm requires careful consideration of the
time series of model errors, which we will pursue further in
future work.

The algorithm described for online MSET produces a col-
lection of anomalies, but these need to be further processed
tomake actionable decisions.We illustrate these considerations
in figure 7. Decisions can sometimes bemade byeye to separate
anomalies which are part of learning the nominal pattern and
those which correspond to irregular patterns, but it is impor-
tant to formally quantify success or failure of algorithms
using unbiased measures. To formalize our intuitive notion,
we declare the end of the ‘learning’ phase the first time an
anomaly is detected after some period of time T since the pre-
vious anomaly. Hence, our goal is to study various choices of T
and consider the trade-off between excessively small and large
values. For this section, we apply a formal training/validation
scheme to avoid overfitting the dataset. The data consisted of
185 time series of the original 306, screened for having suffi-
cient post-inoculation data and little or no missing data to
impute. The training and validation sets for the choice of
delay T have 92 and 93 data points, respectively, chosen ran-
domly using the random number generator in numpy with a
fixed (known) seed for reproducibility.

4.4.1. Online MSET with identification of learning
phase—training.

For a threshold T small, we expect the ‘training’ phase to be
halted quite early, and consequently there will be significant
numbers of false-positive anomalies prior to inoculation.
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Large values of T result in a decrease in both false and true
positives and an increase in the number of days after inocu-
lation until the first anomaly. For even larger values of T,
there are not sufficiently large gaps in the data to even declare
an end to the learning phase.

In figure 8, we visualize how this manifests in practice on
the training data. Here the data were preprocessed via Haar
wavelets, keeping a small number of detail coefficients, and
the threshold for MSET chosen as ɛ = 0.05. Because the wavelet
smoothing results in piecewise constant time series, our par-
ameter T is in multiples of 64min—the displayed threshold
is displayed as the number of multiples of 64. For a reasonable
comparison across the data, we restrict our attention from pre-
inoculation to at most 7 days after the point of inoculation. We
do see excessively small thresholds to exit training result in
high false-positive anomalies, while true-positive counts are
relatively insensitive to this threshold in aggregate. The
number of time series which fail to exit the learning stage
grows steadily after T = 15 × 64, as does the time the algorithm
identifies its first true-positive anomaly.

Considering these results, we determined a value of T =
12 × 64 (768min, or nearly 13 h) as a threshold between



Table 1. Results for the online MSET algorithm with a 768 min separation between learning and anomaly detection phases on 92 validation time series. Note
that the algorithm failed to exit the training phase on a single time series, not included in the statistics here. Data are organized by the number of false-
positive anomalies identified in the anomaly detection phase. Of primary interest here is the first time anomalies are detected following infection; hence all
numbers are positive and are reported in hours following infection.

false positives 0 1–5 6–10 11–15 16–20 aggregate

count 55 21 12 2 2 92

median first anomaly (hours) 39.5 1.1 1.6 4.3 4.8 15.0

10% quantile first anomaly (hours) 7.5 0.0 0.0 3.4 2.7 6.0

90% quantile first anomaly (hours) 84.3 5.3 4.3 5.1 6.9 31.0
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successive anomalies to formally end the training period
achieves a careful balance between minimizing false positives
and not being overly stringent for the purposes of training
and early detection. At this value, only a single time series in
the training data fails to finish the learning phase, and the
median time of the first true-positive anomaly is within 1
day after infection (the 90th percentile is within 2.5 days).
Note that individual mice may still have false positives with
this value.
4.4.2. Online MSET with identification of learning phase—
validation.

To validate the choice of parameter T = 768 separating learn-
ing and anomaly detection phases, we applied the algorithm
to 93 time series not involved in the decision of parameters.
Online MSET with this gap time and ɛ = 0.05 was applied
to all time series in this set. The algorithm failed to leave
the learning phase for a single time series of these 93 because
it did not achieve the threshold gap of 768min between suc-
cessive updates. For the remaining 92 time series, we
summarize the results in table 1.

The primary statistic we are interested in here is the time
required for the anomaly to first detect off-pattern behaviour
in the data. While the patterning of anomalies is different
from mouse to mouse, we summarize by reporting statistics
across each group. The median anomaly time following infec-
tion for the group with no false positives was 39.5 h, with a
[10%, 90%] quantile range of between 7.5 and 84.3 h after
infection. The remaining groups with a range of false posi-
tives have noticeably lower times to detecting a first
anomaly, but this observation should be interpreted carefully
depending on the application. In our broader interests of
inferring underlying health state, which is beyond the scope
of this paper, it may be acceptable to ignore false positives
or include them directly as an additional feature by which
one could separate different modes of response to infection.
For those interested in detecting interruptions and interven-
ing for positive health outcomes, the cost of a false positive
needs to be judged more carefully, i.e. this may result in
healthy subjects being treated unnecessarily.

While the main goal of this study is to successfully predict
anomalies in relation to Salmonella infection, we observe that
false positives prior to inoculation time do often correspond
to interruptions in prior circadian pattern. Robustly addressing
this observation may require a much longer nominal obser-
vation period (which is not available with these data) or
cross-time-series inference via, for example, dictionary learning
methods and proper normalization acrossmice, whichwe leave
for future work.
5. Conclusion
Observations ofmouse temperature telemetry data suggest that
the health state of an individual may be determined using tech-
niques for modelling time series on high-dimensional domains.
To this end, we have explored machine and geometry learning
algorithms to characterize patterns in mouse temperature time-
series data, in the direction of post hoc visualization, and ‘online’
anomaly detection.

In the direction of visualization, we have illustrated that
Laplacian Eigenmaps may be used to extract prototypical sig-
natures at the onset of infection and provide a tool to
visualize the collapse of healthy circadian rhythms across the
entire dataset. We also investigated the impact of using differ-
ent dissimilarity measures between time series: pointwise
Euclidean, correlation distance and a custom correlation dis-
tance. When one only has a sense of dissimilarity between
objects, we highlight that MDS is a useful tool to embed the
data to best visualize these dissimilarities in aggregate. Similar
structures to those from Laplacian Eigenmaps—i.e. loops—are
observed when applying such techniques to healthy circadian
patterns. There is little structure when focusing attention after
infection, aside from the collapse of the loop, except when one
builds new dissimilarities such as to account for phase differ-
ences in the data. Such visualizations reveal some association
between the resulting radial clustering of theMDS embeddings
and severity of infection.

In the direction of anomaly detection, we have demon-
strated the utility of both sparse RBF and MSET to identify
anomalies in these time series and provide insight into quanti-
fying the time to a time series becoming ‘off-pattern’ as
measured by the first post-infection anomaly. Beyond a proof
of concept, we report detailed results of the performance of
the online variant of MSET with a simple approach to separ-
ating learning and anomaly detection phases. We can most
confidently report on those data for which no false-positive
anomalies are recorded. Of this subset of 55 of 93 mice,
their first post-infection anomalies were at a median of 39.5 h
after infection,with 80%of the data having their first anomalies
between 7.5 and 84.3 h after infection. This is a reflection of the
ability of the methods to identify anomalies in time series with
very little prior knowledge and the changes in the data as a
result of host responses against Salmonella infection.

Applications of the anomaly detectors could include the
identification of specific time points, e.g. disease onset, or
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progression to full blown disease, for further clinical study of
an animal. In addition, anomaly detectors provide an auto-
mated tool for health monitoring and interventions, e.g.
euthanasia in the case of severe anomalies.
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